TTM
COMING SOON
In Development

Institutional-Grade
Algo Trading

Autonomous trading combining deep learning, reinforcement learning, and explainable AI for transparent, risk-managed crypto trading.

Features

Technical Specifications

Built for Performance

Trading Engine

Multi-Exchange

Binance, Coinbase, Kraken via CCXT

Order Types

Market, Limit, Stop-Loss, TWAP

Paper Trading

Full simulation mode

Low Latency

Sub-50ms execution

ML/AI Models

LSTM Networks

Pattern recognition

Transformer

Multi-horizon forecasting

PPO Agent

Adaptive position sizing

Ensemble

Meta-learning

Risk Management

Dynamic Sizing

Kelly criterion

Drawdown Protection

Circuit breakers

VaR & CVaR

Real-time metrics

Explainable AI

SHAP Values

Feature attribution

LIME

Local explanations

Confidence

Uncertainty quantification

Architecture

Modern Stack

Python backend with FastAPI. TensorFlow and PyTorch for neural networks. Next.js dashboard.

TimescaleDB for time-series. Redis for caching. Docker orchestration. Prometheus + Grafana monitoring.

TTM/
├── src/
│   ├── trading/
│   │   ├── execution_engine.py
│   │   ├── risk_manager.py
│   │   └── portfolio_optimizer.py
│   ├── models/
│   │   ├── lstm_model.py
│   │   ├── cnn_lstm.py
│   │   ├── transformer.py
│   │   ├── tft_model.py
│   │   └── ppo_agent.py
│   ├── xai/
│   │   ├── shap_explainer.py
│   │   ├── lime_explainer.py
│   │   └── confidence_scorer.py
│   ├── data/
│   │   ├── multi_exchange.py
│   │   └── preprocessor.py
│   └── api/
│       └── server.py
├── web/
│   ├── app/
│   │   ├── dashboard/
│   │   └── api/
│   └── components/
├── scripts/
│   ├── backtest.py
│   └── train_models.py
├── docker-compose.yml
├── requirements.txt
└── main.py

Roadmap

Development Timeline

Phase 01

Done

Core Engine

ExecutionPaper tradingRisk management

Phase 02

Done

ML Models

LSTMTransformerPPO agent

Phase 03

Done

XAI

SHAPLIMEDashboard

Phase 04

Active

Production

Live tradingSecurity audit